We have selected 16 municipalities with the largest number of buildings to import, the two Autonomous Cities in Africa, 8 random municipalities with between 1,000 and 10,000 buildings, and 10 random municipalities with less than 1,000 buildings. The number of buildings refers to data published in September 2017.
Candidate municipalities for validation
N#.
Code
Name
Comunity
Buildings
Area (km²)
Population (hab. 2016)
1
28900
Madrid
Madrid
122 839
605.8
3 165 541
2
30030
Murcia
Región de Murcia
80 495
881.9
441 003
3
08900
Barcelona
Cataluña
70 296
102.2
1 608 746
4
41900
Sevilla
Andalucía
58 559
140.8
690 566
5
51016
Cartagena
Región de Murcia
53 283
398.3
569 009
6
29900
Málaga
Andalucía
51 055
398.3
569 009
7
35017
Las Palmas de G.C.
Canarias
41 941
100.6
378 998
8
54057
Vigo
Galicia
41 597
109.1
292 817
9
07040
Palma
Islas Baleares
38 586
208.6
402 949
10
14900
Córdoba
Andalucía
36 944
1 255.2
326 609
11
46900
Valencia
Valenciana
36 407
134.7
790 201
12
50900
Zaragoza
Aragón
35 355
973.8
661 108
13
38023
S.C. de La Laguna
Canarias
31 976
102.1
153 111
14
06900
Badajoz
Extremadura
23 133
1 440.4
149 946
15
52024
Gijón
Asturias
22 648
181.7
273 422
16
47900
Valladolid
Castilla y León
16 999
197.9
301 876
17
56101
Melilla
Melilla
9 866
12.3
86 026
18
55101
Ceuta
Ceuta
7 304
18.5
84 519
19
13028
Campo de Criptana
Castilla-La Mancha
6 158
302.4
13 949
20
45123
Olías del Rey
Castilla-La Mancha
3 067
39.9
7 357
21
25070
Les Borges Blanques
Cataluña
2 898
61.6
6 000
22
39074
Santa María de Cayón
Cantabria
2 474
48.2
9 078
23
12085
Oropesa
Valenciana
2 378
26.4
9 245
24
04101
Viator
Andalucía
2 166
21.0
5 699
25
44260
Valderrobles
Aragón
1 270
124.0
2 311
26
09361
Santa María del Campo
Castilla y León
1 223
60.3
584
27
49189
Quiruelas de Vidriales
Castilla y León
864
28.0
706
28
10189
Torrecilla de los Ángeles
Extremadura
772
43.3
640
29
16005
Albalate de las Nogueras
Castilla-La Mancha
671
40.1
276
30
19190
Ledanca
Castilla-La Mancha
618
47.3
110
31
26069
Grañón
La Rioja
595
31.0
275
32
37350
La Vellés
Castilla y León
535
25.5
557
33
05015
Arevalillo
Castilla y León
389
15.0
86
34
17184
Sant Miquel de Fluvià
Cataluña
376
3.5
742
35
22279
Salillas
Aragón
204
28.3
98
36
42095
Centenera de Andaluz
Castilla y León
110
19.9
21
The validation process generates the following data.
Quantitative results
This table shows the dimension of the data before and after the conversion. The column 'Cadastre' indicates the number of objects in the original data and the column 'import' the number of objects in the converted data.
Quantitative results
Code
Municipality
Buildings
Building parts
Swimming pools
Direcciones
Increment of vertices
Nodes
Ways
Rels.
Tasks
Cadastre
Import
Cadastre
Import
Cadastre
Import
04101
Viator
2 166
2 780
4 443
1 144
125
2 349
1 245
-3 914
20 158
4 162
111
174
05015
Arevalillo
389
455
617
83
-
370
296
-83
2 478
538
-
37
06900
Badajoz
23 133
37 652
89 242
28 982
3 216
25 593
15 320
-89 450
382 186
72 429
2 178
2 382
07040
Palma
38 586
58 549
251 422
90 174
4 780
42 211
25 881
-219 843
823 658
157 680
3 885
3 318
08900
Barcelona
70 296
81 530
319 857
200 277
962
76 581
57 122
-112 969
1 396 249
310 118
21 165
4 807
09361
Santa María del Campo
1 223
1 554
2 286
372
7
1 313
514
-2 108
8 523
1 937
6
210
10189
Torrecilla de los Ángeles
772
839
1 120
139
11
824
603
-660
4 905
999
6
73
12085
Oropesa
2 378
3 420
12 328
7 181
732
3 449
1 864
-12 523
72 186
11 797
287
338
13028
Campo de Criptana
6 158
7 346
12 949
3 504
197
6 754
4 871
-8 898
57 324
11 427
345
469
14900
Córdoba
36 944
60 614
151 432
46 847
11 220
39 733
25 827
-47 807
709 871
126 104
6 859
3 434
16005
Albalate de las Nogueras
671
726
954
165
15
796
614
-583
3 987
906
-
68
17184
Sant Miquel de Fluvià
376
484
902
253
47
444
262
-1 558
4 335
785
4
46
19190
Ledanca
618
649
868
151
11
620
500
-273
3 525
816
4
82
22279
Salillas
204
302
511
96
1
150
109
-171
1 849
401
2
32
25070
Les Borges Blanques
2 898
3 553
9 039
3 768
121
2 776
1 962
-8 117
28 335
7 487
44
169
26069
Grañón
595
632
834
147
6
639
524
-117
3 055
785
2
45
28900
Madrid
122 839
152 757
803 272
413 499
13 358
133 806
83 636
-699 973
3 065 059
615 106
27 851
11 893
29900
Málaga
51 055
64 533
205 596
81 952
5 643
55 213
40 987
-146 346
875 863
158 176
5 196
5 733
30030
Murcia
80 495
108 169
280 302
92 392
8 471
100 392
58 282
-371 151
1 185 938
216 027
6 605
9 474
35017
Las Palmas de G.C.
41 941
48 065
167 768
71 574
656
45 760
31 115
-186 819
678 114
128 493
7 821
3 742
37350
La Vellés
535
681
1 438
353
17
575
395
-645
5 820
1 067
20
62
38023
S.C. de La Laguna
31 976
38 144
95 112
39 402
307
35 963
25 944
+3 443
414 341
81 870
3 810
2 775
39074
Santa María de Cayón
2 474
3 307
10 140
3 638
37
2 291
1 408
-7 600
34 510
7 036
58
313
41900
Sevilla
58 559
67 250
217 421
83 613
1 696
60 188
48 994
-156 206
864 906
164 951
12 623
6 442
42095
Centenera de Andaluz
110
117
147
19
3
190
93
-65
701
139
-
21
44260
Valderrobles
1 270
1 347
2 834
1 133
9
1 457
1 158
-2 176
9 166
2 511
22
151
45123
Olías del Rey
3 067
3 809
11 965
4 066
588
5 000
2 561
-14 155
46 151
8 584
91
241
46900
Valencia
36 407
42 465
213 502
115 304
654
41 040
31 598
-279 238
769 447
169 270
10 514
4 082
47900
Valladolid
16 999
25 305
104 519
42 506
696
19 594
11 644
-106 226
399 859
75 684
3 415
1 933
49189
Quiruelas de Vidriales
864
1 257
1 880
445
27
988
432
-1 157
8 240
1 740
17
87
50900
Zaragoza
35 355
52 589
202 242
89 366
3 984
38 747
8 643
-144 409
736 015
150 238
3 607
3 375
51016
Cartagena
53 283
68 969
206 714
58 207
3 897
61 314
41 883
-207 487
809 949
135 712
3 598
5 164
52024
Gijón
22 648
32 306
110 477
47 401
915
29 620
12 427
-105 982
389 881
81 359
928
2 168
54057
Vigo
41 597
61 252
175 336
73 643
2 349
59 594
26 267
-101 474
649 104
138 187
1 189
3 160
55101
Ceuta
7 304
8 702
21 444
6 837
147
7 952
6 184
-15 059
88 295
16 271
502
853
56101
Melilla
9 866
11 071
31 503
12 992
228
10 287
9 420
-17 733
123 969
25 474
1 087
1 308
Total:
36
806 051
1 053 180
3 722 416
1 621 625
65 133
914 573
580 585
-3 069 532
14 677 952
2 886 266
123 852
78 661
Variation:
+23.5%
-56.4%
+36.5%
-17.3%
For buildings, an increase occurs because in the original data a group of buildings located in the same parcel (sharing the cadastral reference) is represented by a single geometry of multipolygon type. When converting, they have been separated into individual buildings. In a few cases, there are also building parts outside the footprint for which the building footprint has been created. On the other hand, the process of eliminating junk geometries can remove some buildings.
The number of swimming pools is not modified during the conversion.
The number of addresses is reduced because those that are not associated with exactly one building are not imported. Those that already exist in OSM will not be imported also.
Each task includes an average of 13 buildings. Although this number is usually greater in the tasks corresponding to the Rustic Cadastre, they are also usually less complex buildings.
Qualitative results
This table shows the number of problems detected in each municipality.
Qualitative results
Code.
Municipality
Fixmes
JOSM Errors
JOSM Warnings
AG
AP
PM
FC
VG
Total
EG
V2
VF
IP
Total
EE
EI
ND
NP
OD
RM
VP
Total
04101
Viator
-
-
-
-
-
-
-
-
-
-
-
-
2
-
-
-
-
-
2
05015
Arevalillo
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
06900
Badajoz
13
2
-
7
-
22
-
-
-
-
-
-
3
-
-
-
-
-
3
07040
Palma
6
52
-
-
-
58
1
-
-
-
1
6
11
1
-
1
-
-
19
08900
Barcelona
27
33
2
6
-
68
1
-
-
1
2
76
3
2
-
-
-
5
86
09361
Santa María del Campo
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
10189
Torrecilla de los Ángeles
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
12085
Oropesa
2
-
-
-
-
2
-
-
-
-
-
-
-
-
-
-
-
-
-
13028
Campo de Criptana
-
-
-
-
-
-
-
-
-
-
-
-
10
-
-
-
-
-
10
14900
Córdoba
2
16
3
135
-
156
-
-
-
-
-
6
6
-
-
1
-
1
14
16005
Albalate de las Nogueras
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
17184
Sant Miquel de Fluvià
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
19190
Ledanca
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
22279
Salillas
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
25070
Les Borges Blanques
-
-
1
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
26069
Grañón
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
28900
Madrid
90
200
4
4
1
299
4
1
1
-
6
376
29
1
1
56
1
10
474
29900
Málaga
10
5
2
-
-
17
1
-
-
-
1
6
9
-
-
20
-
3
38
30030
Murcia
9
12
21
6
-
48
-
-
-
-
-
4
19
1
-
3
-
1
28
35017
Las Palmas de G.C.
4
9
-
-
-
13
-
-
-
-
-
3
4
1
-
-
-
-
8
37350
La Vellés
-
-
-
-
-
-
-
-
-
-
-
-
1
-
-
-
-
-
1
38023
S.C. de La Laguna
4
8
4
6
-
22
-
-
-
-
-
11
6
-
-
6
-
2
25
39074
Santa María de Cayón
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
41900
Sevilla
12
21
4
-
-
37
1
-
-
-
1
8
4
-
-
9
-
1
22
42095
Centenera de Andaluz
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
44260
Valderrobles
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
45123
Olías del Rey
1
-
-
-
-
1
-
-
-
-
-
-
-
-
-
-
-
-
-
46900
Valencia
11
26
4
11
-
52
-
-
-
-
-
31
12
-
-
-
-
2
45
47900
Valladolid
14
43
1
-
-
58
-
-
-
-
-
4
3
-
-
-
-
-
7
49189
Quiruelas de Vidriales
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50900
Zaragoza
27
18
3
-
-
48
2
-
-
-
2
6
13
-
-
-
-
-
19
51016
Cartagena
3
12
1
-
-
16
-
-
-
-
-
1
1
-
-
1
-
-
3
52024
Gijón
7
8
-
-
-
15
-
-
-
-
-
-
2
-
-
-
-
-
2
54057
Vigo
4
15
1
5
-
25
-
-
-
-
-
6
8
-
-
1
-
2
17
55101
Ceuta
1
3
2
-
-
6
-
-
-
-
-
2
3
-
-
-
-
-
5
56101
Melilla
2
4
-
71
-
77
-
-
-
-
-
-
-
-
-
-
-
1
1
Total
250
487
53
251
1
1 041
10
1
1
1
13
546
149
6
1
98
1
28
829
The meaning of the columns corresponds to the following key.
The percentage of problems detected against the number of possible candidates to suffer the problem is very low. These are the possible types:
Fixmes
Number of corrections reported by the conversion tool in the OSM files.
Area too big: The building area is smaller than the value of the 'warning_min_area' option in the file 'setup.py'.
Area too small: The building area is greater than the value of the 'warning_max_area' option in the file 'setup.py'.
This part is bigger than its building: A building part that is larger than the building to which it belongs have been found.
Missing building footprint for this part: The building footprint has not passed the validation tests, it has been removed and building parts remain orphaned.
GEOS validation: The geometry has not passed the validation tests of the GEOS library.
Way with more than 2 000 nodes: It could be a false building.
Role verification problem: Multipolygon relation without inner rings.
Intersection between multipolygon ways: Topological errors not fixed by the correction alglorithm.
Warnings in JOSM/Validator
Number of warnings reported by the JOSM validator.
Building inside a building: Topological errors not fixed by the correction algorithm.
Intersecting buildings: Topological errors not fixed by the correction algorithm.
Mixed type duplicated nodes: Duplicated nodes not fixed by the correction algorithm.
Nodes in the same location: Duplicated nodes not fixed by the correction algorithm.
Other duplicated nodes: Duplicated nodes not fixed by the correction algorithm.
Relations with the same members: Usually duplicated buildings with diferent uses or state of conservation.
Ways with same position: Usually duplicated buildings with diferent uses or state of conservation.
Accuracy with respect to aerial images
A manual inspection of the data on aerial images has been carried out. The process consisted of selecting a random sample of the task files generated by the program and reviewing them in JOSM, counting the number of elements that require some type of manual correction before import. The problems detected that need manual correction have moved to this catalog.
Cat2Osm2 was a great tool with a lot of work behind it that was used in the first attempt to import data from the Spanish Cadastre. Cat2Osm2 allowed many of us to access the Cadastre data and has evidenced problems that we want to correct before importing on this occasion. These are some arguments in favor of replacing it by CatAtom2Osm.
Example of a bloc of raw data.
Example of bloc transformed with Cat2Osm2.
Example of bloc transformed with CatAtom2Osm.
These screenshots show a block with the raw data (on the left), transformed using Cat2Osm2 (center) and with CatAtom2Osm (on the right). After passing the validation tool in the first case we have 14 problems versus 0 in the second. The reason is that the Cadastre data includes topological problems that had to be corrected manually.
As for the number of elements, the first example needs 128 ways and 606 nodes, while the second uses 2 relations, 125 ways and 481 nodes. The number of nodes has been reduced because there is more cleaning of unnecessary nodes in straight lines. The two additional relations are necessary to represent buildings and parts with holes. Its absence caused the error "Building inside a building" in the validator.
Detail of a block of raw data.
Detail of a block transformed with Cat2Osm2.
Detail of a block transformed with CatAtom2Osm.
These series of screenshots show in more detail the topological problems and the unnecessary nodes.
Cat2Osm2 took the addresses of Cadastre making some corrections on the throughfare names such as the use of uppercase and lowercase, but then it was necessary to select and correct each street in each of the import files in which the data were divided, tedious and repetitive work. CatAtom2Osm collects the thoroughfare names from OSM and combines them with the Cadastre addresses, it is reviewed globally before they appear in the task files reducing the necessary effort.
When Cat2Osm2 started, the Simple 3D Buildings was a recent scheme and was not applied. The different levels of a building are transformed as individual buildings that together sum the footprint of the real building. This works well when it comes to 3D rendering, but it gives an incorrect result if you want to count the number of buildings or assign properties to a building as such. In CatAtom2Osm, for each real building there is a way or multipolygon relation and the different levels are included in building parts.
Cat2Osm2 divided the data into files by block. Some blocks are adjacent and their buildings have common walls. Importing the data black by block it was ncessary to manually merge the nodes of these walls with the data already imported. CatAtom2Osm avoids this problem by merging adjacent blocks before dividing the data into tasks.
As an additional bonus, CatAtom2Osm automatically downloads the data from the ATOM services; with Cat2Osm2 you need a digital certificate for accessing the download page. CatAtom2Osm also takes 50% less processing time.
/usr/bin/time -v java -jar cat2osm2.jar 38023
Command being timed: "java -jar cat2osm2.jar 38023"
Elapsed (wall clock) time (h:mm:ss or m:ss): 28:00.84
Maximum resident set size (kbytes): 2157576
Minor (reclaiming a frame) page faults: 70411
Voluntary context switches: 107306
Involuntary context switches: 18901
Swaps: 0
File system inputs: 16544
File system outputs: 2007656
/usr/bin/time -v catatom2osm -btd 38023
Command being timed: "catatom2osm -btd 38023"
Elapsed (wall clock) time (h:mm:ss or m:ss): 13:08.88
Maximum resident set size (kbytes): 2812460
Minor (reclaiming a frame) page faults: 1236035
Voluntary context switches: 445
Involuntary context switches: 4681
Swaps: 0
File system inputs: 37192
File system outputs: 10066256